
— — — one

earn

hace,

Pods MU ae ba

ISSN 0265-2919

8Op ,

3 “ . nt SON a
co co _ : . | LL .

tS ae x

_ _
.
— Ll] x _. SS

ee

Sah eRR yh

SRS

a

__

ARE YOU BEING WATCHED? We
look at the latest in computer
surveillance techniques

APPLEBITES The Macintosh is
the latest in micro innovation from Apple

THE GENTLE TOUCH The ability to
touch-type can be of enormous benefit

TROUBLED WATERS River Rescue is a

challenging game

ADDING DAZZLE We add some
last-minute refinements to our Minefield 466 ree r—S

program for the BBC and Electron ee __ 1)Havingtakenthetroubletoassembleaprogram, __

CIRCULAR MEASURE Our program MC
simulates a Towers of Hanoi puzzle | 474 2) What is the purpose of ‘top-down’ design?

TOP SECRET The key to good
ing 1 at 4) Whatis the si nificance of | (exclamation mark) _

programming isthe ‘top-down’ approach 4/76 | jy amation mark) in the Towers of Hanoi program?

FROMDISASSEMBLERTO. OS
DOWNLOAD A weekly glossary of AG Q

computing terms
|

NOT SO FAST We learn how to
implement time delay loops | 478

=. ae

COLOURFUL CONNECTION After sig}.

successfully launching Micronet,Prism § 4
has become a force to be reckoned with SRE LHBTERADCAET nema eeTTeT

poe

ARE YOU BE

COMPUTER SURVEILLANCE, APPLICATION

Re as

ai ata sea

STEVE CROSS

Wiring The Office

) The are a great many places

attempt to stop abuses of this kind of power. But _ where listening devices can be
there are those who believe it to be outdated, in the - reel i eee bhi

light of the: rapid advances im computer executive's Office, the following
technology since its introduction. While the world’s law enforcement agencies !

places could be concealing
Swoop on teenage ‘hackers’ for cracking
computer codes, those same agencies, and
those without the backing of the law, are
involved in similar surreptitious activities. In
this article .we look at the latest
developments in computer surveillance
techniques.

The official use of computer surveillance is
constantly expanding into more and more areas of
everyday life, and the odds are that we have all
found our way into some system at some time.

Some of the surveillance is innocent enough
and of vital importance to government agencies,
such as the records of cars and licences held on the
DVLC computers at Swansea or the DHSS’s
computer-based social security records. The
possibility has now been raised of linking these
various systems together, to correlate the files from
the DVLC and DHSS systems with the files on,
say, the Police National Computer at Hendon.
That gives the authorities much more power to
monitor the activities of the entire population.

The Data Protection Act was introduced in an

A lot of the techniques used in computer
surveillance and security systems involve pattern
recognition, a technique whereby the computer
compares what it ‘sees’ with patterns already
stored in memory. The drawback to pattern
recognition is that it requires large amounts of
memory space and vast amounts of computer
processing power. Now both of those are
available, and cheap, which has_ enabled
significant advances to be made.
An example is the new fingerprinting system

that Logica has installed for the Metropolitan
Police at London’s New Scotland Yard. It has
taken 15 years of development to create the
system, which can store 650,000 fingerprints and
100,000 ‘marks’ — partial prints found at the
scene of a crime. The system simply compares the
marks with all of the stored prints, to see if they
match with anything on file. This application
needs the computer power of Prime
minicomputers, in conjunction with highly
efficient array processors and high-performance
television monitors and cameras. Even so, it can
only check 200 or 300 marks against the 650,000

‘bugs :
1) The telephone. The bug

could be in the
mouthpiece or in the
body of the phone, or in
the lamp, which is placed

very near.
2) Potted Plant. In the earth,

under the pot, or even
disguised as a real bug!

3) The wall. Bugs have been
known to be embedded in
the wall as ‘studs’, or
behind cork panelling.

A) Hanging picture.
Disguised as a support
hook or concealed —
behind.

5) In the desk. Underneath
the desk-top or in any of
the drawers

THE HOME COMPUTER ADVANCED COURSE 461

geen

| Tools Of The
Trade
Computerised Protection
Many executives, and people
who deal with classified
information, are protecting
themselves from electronic
spying with gadgets like this
computerised telephone

on the telephone, the user
types his messages on the
keyboard. The scrambler

form over ordinary telephone
lines. The message is then
received on a matching
system’s built-in screen. A
built-in voice synthesiser can
also convert the incoming
message into audible speech
at the touch of a button

Coded Message
Similar to the computerised

scrambled message from a
handwritten note. The
scrambled message Is

silently. Even signatures can
be sent in this way

Stress Analyser
The voice stress analyser

in the voice and dis,lays its
results instantly in a simple

a sophisticated lie detector

scrambler. Instead of speaking

sends the message in a ‘silent’

scrambler, this system sends a

protected from eavesdropping
and bugging because it is sent

measures the amount of stress -

numeric readout. This is really

and can also indicate whether _

the person is anxious or tense

i a i oe see is
if HERES $333 # i i

TT # 7 RQ :
i i sth HE HRY He i ff

5 a
gfe esa fait ste SStertet site

ee oo a
uri ee area ae re ce

_ .sssiéi(‘iér..aa..esesese..4séiése

TET ECel

stored prints per day.
A similar pattern recognition and comparison

system is mounted on a bridge across the M1
motorway, with cameras pointing down at each
lane. This system actually captures pictures of the
number plates of approaching cars, then uses
computer power to analyse the pictures and check

462 THE HOME COMPUTER ADVANCED COURSE

the numbers against a file of wanted cars. The
information that one of the wanted vehicles has
been seen can then be radioed direct to motorway
patrol vehicles who will intercept the car.

Initially, the police did not publicise this
achievement very much, and the first real public
notice was taken after a journalist on the New
Scientist, Steve Connor, noticed the cameras and
asked what they were for.

One obvious area in which developments in
microcomputer hardware have had a major effect
is the production of smaller and _ smaller
surveillance devices — that is, bugs. Chip
technology has made it possible to produce radio
transmitters the size of a grain of rice, with
sophisticated control electronics built in. A typical
device ‘bleeds’ its power from the Post Office’s
electricity supply to the bugged telephone, and
only switches itself on when someone is actually
speaking. Then there are self-powered bugs,
equally tiny, that are dropped in the corner of a
room and pick up all conversation in that room —
once again only working when someone speaks —
for transmission to a distant receiver.

Even more in the style of James Bond, there
is a ‘distant’ bug that fires a laser beam at a
window. The vibrations of the glass caused by.
conversation are picked up as interference in
the reflected laser beam, and the speech
information is retrieved from this interference

— by computer, of course.
In military operations, as opposed to

undercover security work, the computer operators
have the opposite problem. They aim to avoid
being monitored by others, and once again chips
and computers have come to the rescue. Today’s
battlefield radio transmitters and receivers use
frequency hopping — __processor-controlled
jumping from frequency to frequency according to
a preset code — to avoid eavesdropping and
jamming.

Computers in surveillance and security are, at
the moment, big machines of the type and power
used for complex code-cracking at places like the
CIA and the National Security Agency in the US
— not to mention Britain’s MIS and MI6. But the
advances in hardware technology mean that
fingerprint recognition perhaps even face
recognition — will soon be automated and made
very inexpensive.

In the future, it is possible that police cars will be
equipped with onboard computers that could
instantly pull out data from a school record,
criminal record, medical record, social security
record or any other official file. All this would be
accessed by sliding a plastic national insurance
card into a slot in the computer. The machine
would accept fingerprints and a photograph,
compare them with central files, and make sure of
the suspect’s identity.

This might seem a paranoid vision, but the
technology is there, or almost there, to do this now,
and there are people i in the law and order lobby
who would like to see it done.

$$

se

i

THE GENTLE TOUCH

eae aa See ec

Mastering ‘the skill of touch-typing is
essential for many aspects of home
computing. What was once regarded as a
clerical chore has in recent years been taken
up by programmers as well as journalists and

pesetters; in fact, anyone who needs to
type quickly and accurately.

Aa ae

The ability to type complete words ¢ on paper or for
viewing on-screen, rather than laboriously tapping
at individual letters on a keyboard, eliminates a
time-consuming step in a process where speed is
often of importance, and reduces the margin for
error.

Typing has traditionally been taught through
instruction manuals, or in a classroom, using a
variety of teaching methods. There is even a range
of software programs on the market that links
lessons directly to the computer. Regardless of the
teaching method, there are four principles that
must be learned to become an accomplished
touch-typist. These are:

® Mastering the keyboard
® Training the eyes on a screen (or paper)
® Accuracy
® Speed

These skills are developed slowly, through
exercises and drills, until oo has reached a

level of proficiency. Constant repetition is the
main method of learning; striking the same letters
until the sequence of fingering becomes
automatic. |

The standard English language typewriter
layout is known as the QWERTY keyboard, so
called because these are the letters displayed on
the left-hand side of the second of the four rows of
keys. Keyboard symbols and letters are positioned
according to their frequency of use, and each
keyboard row is divided into left- and right-hand
sides for the purpose of instruction.

Touch-typing instruction generally begins with
the mastering of the eight keys in the middle row of
letters. These are known as the ‘home keys’,
because the fingers return to these keys once they
have typed other keys on the keyboard. The home
keys for the left side of the typewriter, and
therefore the four fingers of the left hand, are asdf.
The home keys for the right side of the typewriter,
and therefore for the right hand, are jk1; (the semi-
colon). Once these keys have been mastered, the
typist learns the location of the other keys in
relation to their position from the home keys,
feeling and stretching for them while in the ‘home’
position. One surprise for the newcomer to typing
is the use the little finger is put to. Touch-typing
requires the use of all the fingers and the little
finger is allocated a number of keys to ‘cover’, as
are all the others. Once the keys have been learnt,

On Location
Sight and Sound offer touch-
typing courses for beginners
and have a proven record of
success. In this picture,
students are being taught by a
combination of audio and visual
techniques age:

TONY SLEEP

THE HOME COMPUTER ADVANCED COURSE 463

Home Base
This illustration shows the
location of the home keys for
the left and right hands and
the allocation of keys for each

finger. The index and fourth
fingers are responsible for the
largest range of keys because
they have the greatest freedom
of movement ,

®

the typist moves on to the space bar (pressed with
the thumbs), and the shift key for capital letters
and for keys with two characters allocated to them.

Unfortunately for the home computer user, the
correct use of number keys is rarely if ever touched
upon in touch-typing courses or manuals. For the
programmer, especially, the number keys form a
vital and integral part of the computer keyboard.
Touch-typing of numbers is fairly easy to learn
once the concept and operation of the home keys
have been mastered. The fingers of the left hand
simply extend above the alphabetical keys to take
in the numerals one to six, while the fingers of the
right hand are responsible for seven to nought, and
any following symbol keys.
An interesting extension of the ‘home key’

approach can be made when using a home
computer with graphics characters that can be
accessed directly from the keyboard. By learning
the location of the graphics symbols, it should be
possible to incorporate them into your touch-
typing programme.

Training the eyes on a screen (or paper) is
learned at the same time as mastering the
‘keyboard. This is the most important aspect of

- touch-typing, setting it apart from ‘two finger

ar ep)
Lu

z=
ro)
a)

2
>
Lay
Sc

464 THE HOME COMPUTER ADVANCED COURSE

tapping’ or the ‘look and search’ approach to
typing. Covering the keys with tape or specially
designed caps is a useful aid for the beginner as it
cuts out the temptation of looking down at your
hands. In this respect, a keyboard and monitor are
better than a typewriter and paper. The screen is at

gery t ey nile Sane Tiss Be ala

eye level, and the temptation to glance downward
is lessened. Errors can also be corrected
immediately, ensuring greater accuracy, which is
the next stage in mastering touch-typing.

Accuracy is a matter of practice and
concentration. You must strike the key with a firm,
quick tap, squarely in the middle of the Key; hitting
the keys with an equal degree of regularity, which
builds up a rhythm that, in time, becomes natural.
Eventually, using the wrong finger or striking the
wrong key feels awkward, and this natural rhythm
contributes greatly to building up speed.

Speed is measured by time tests and exercises,
and is learned only after the first three stages we

_ have discussed. Top touch-typists can reach
speeds of over 100 words per minute (wpm). For
the beginner, a reasonable speed to aim for is
about 30 wpm.

Several different teaching manuals are
available, and over the years a number of teaching
methods have been devised. These still employ the

_ principles we have outlined. Pitman, the
international secretarial school, still produces a
manual that was first published 35 years ago, as
well as an updated version that teaches the
keyboard through the typing of words from the ©
very first exercise. Because small and commonly
used words are used in these initial exercises, little
effort is required to handle the spelling, which

leaves the beginner free to concentrate on
acquiring the necessary technique.

The Dico Typing Course claims to have taught

wees. ¢

11-year-old children to touch-type in under 10
hours. This approach is based on the work of
American psychologist BF Skinner. In this
method, the beginner tears the page out of the
manual and types out the answer beneath the
exercise set. This follows the traditional method of
teaching in which the student copies set exercises
exactly. The exercises are accompanied by
drawings of hands in the correct position on the

_ keyboard.
One school to bring old-fashioned touch-

typing methods directly in line with modern
thinking is Sight and Sound, an organisation with
11 training centres in Britain and more abroad.
Sight and Sound’s teaching methods involve the
use of flashing lights and recorded cassettes. This
audio-visual teaching system simulates the
responses of seeing, hearing and reacting
simultaneously. On a large overhead board a light
flashes a letter. The recorded tape synchronises
with the board and the pre-recorded voice of the
instructor calling ‘Now!’ will set the speed at which
letters are to be typed. As you become more
advanced, the speed at which the instructor will
call for the letter to be typed will increase. Sight
and Sound’s technique has been described as
‘brainwashing’, and even the instructors will admit
that they do not fully understand why this method
works so effectively. However, the number of
satisfied customers who learn to touch-type ©
efficiently and effortlessly indicates that the
system works, whatever the reason.

SECOND FINGER

FOURTH FINGER

Software Roundup
Computer programs that teach touch-typing are
either text- or games-based. Text-based packages
rely heavily on exercises, repetition and drills.

Most lessons in this sort of program are text-based,
usually in the form of written exercises that the user
must copy exactly. Games-based packages teach
through the use of graphics, fast action and sound.

IAN McKINNELL Type Invaders

Publisher: Carswell Computers
Price: Disk/£10.50, cassette/£6.95

Machine: BBC Model B

This is a games-based package for those with rudimentary
typing skills. Its simple graphics display ‘attacking’ letters that
must be destroyed by typing them correctly. Words and letters
that have been missed attack again and can eventually blow up
defence lines and occupy your land. There are 10 different levels
of play, ranging from capital letters only to five-letter words
incorporating upper and lower case, capitals and figures. There
are also four separate speeds: easy, fast and rapid. Skilled
typists will find even the ‘rapid’ option easy. However this is a
fun, practical package for slow to average typists. Beginners
should practice first with the Typeasy package from the same
manufacturer :

Sprintyper

Publisher: Micro Software International

Price Cassette/£14.95

Machine: Commodore Vic-20

This is a text-based package, which claims to promote speed
and accuracy for both beginners and advanced typists. It has a
library of 356,635 sentences to improve skills. To begin with, an
easy sentence is show on the screen, to be typed as quickly as
possible. A low tone signals a mistake, and will stop only when a
correction has been made. Once the sentence has been copied
correctly, the typing time, number of errors and a record time
appears on the screen. Sprintyper is essentially a speed test,
offering the beginner little in the way of constructive exercises

Typing Tutor Il

Publisher: Microsoft
Price: Disk/£21.85
Machines: Apple lle and Apple lle+

To run this package you will need Applesoft in ROM, 48K of
memory, a disk drive and DOS 3.3. This is a menu-driven text- -
based package, providing a combination of lessons, practice
paragraphs and speed tests. Typing Tutor’s most important
feature is the ‘Time Response Monitoring’ system, which checks
the typing 100 times per second, detecting even the slightest
pause that occurs should the eyes move from the screen to the
keyboard. Beginners start with a number of letters to practise. As
they become familiar with these letters, and when the speed of
typing is equivalent to 30 words per minute, those letters are
transferred to a FAST column and new letters selected for
practice. For experienced typists, the progress report on the
practice paragraph details the number of errors made, the keys
on.which these errors were made, speed and accuracy. This is
highly recommended for typists at all levels of skill. It is initially a
little difficult to follow, and users are advised to study the
documentation carefully beforehand

THE HOME COMPUTER ADVANCED COURSE 465

~ ADDING DAZZLE

At this stage in our programming project for
the BBC Micro and the Electron, we have
developed all the routines that form the
basic skeleton of our Mines game. We can
now concentrate on adding refinements to
the program that will make the game
visually appealing and exciting to play.

e) The first addition we shall make is a ‘sniping
routine. This simulates a sniper firing across the
minefield trying to hit either the mine detector or
the assistant. The firing will be shown as a high
resolution line crossing the screen from the left

_margin of the minefield to the night. To introduce a
random element into the sniping, we shall select
the co-ordinates of the starting and finishing
points using the RND function. The values of xstart
and xfinish are set in the initialise variables
procedure. The difference between these two
values is 1,024 graphics units. If the sniping line is
to detect a hit on either the detector or the assistant
it must draw a short segment of the line, then test
the area ahead for the presence of logical colour 1
(using the POINT command) before drawing the
next short segment. This sequence must be
repeated until the other side of the screen is
reached or a hit is made.
We must now decide on the step length we wish

to use. If we choose a very short step length, then
the time taken to draw the line will increase. If,
however, we have too long a step length we may
miss detecting the targets altogether. As each
character cell is the equivalent of 64 graphics units
across, a step length of half a character cell (i.e. 32
graphics units) would seem _ reasonable.
Therefore, if we choose our step length in the x
direction (dx) to be 32 units, we can draw the line
in a total of 1024/32=32 steps. If we calculate the
y co-ordinates of the start and finish points
randomly, then the appropriate step length in the y
direction (dy) can be calculated by dividing the
difference between the two values by 32.

Our final problem is to find some way of erasing
the line after it has been drawn. The solution lies in
BBC aasic’s concept of logical colours and its
ability to perform logical operations between
them. In mode 5 there are four logical colours.
Unless we modify them they are:

Using GCOL we can perform various logical
operations between the colour we are plotting and

466 THE HOME COMPUTER ADVANCED COURSE

the colour that is already there. The command has
two parameters, the second of which indicates the
logical colour to be plotted. The first number sets
the method of plotting:

This may sound complex, but a few examples
should make the operation of the command clear.
If white (logical colour 3) is present at the position
that we wish to plot to and we want to plot red
(logical colour 1) the various modes of operation
of GCOL will produce the following results:

So how does this help us with our erasing
problem? We could plot the line in white and then
replot in black to erase it. But if there were already
something under the line, such as a mine, then this
would cause a ‘hole’ to be left in it. However, we
can Exclusive OR the red with the colour already
present at each point the line crosses. When. it
crosses a white area, we shall get a yellow line
segment. If we plot over the same area in Exclusive
OR red again, the final result would be:

red 01
yellow *10
EOR —
white 11

_ Thus, the original colour is returned. You may
wish to verify that performing two Exclusive ORs
always leaves you with the original colour. We can
use this fact to erase our line. If we plot the original
line using an EOR operation and then replot
exactly the same line, again using Exclusive OR,
we will erase the line and restore any background
colours to their original condition before the first

|

i a a

plot. Here is the complete listing for the snipe
procedure: |

SL1QDEF FROCSsnipe

3120ystart=RND¢750)+220

3130yf¢ ini sh=RND¢750)+220

3140dx=32:dry=tyfinish-rystartI/3Z2 »

SL S0bE Oe Sis

Sl e0PROCT ine

SI?7GIF FOINT¢x,y»2=1 THEN PROCexplodetx, y>? ELSE PROCIine

31 80ENDPROQC

And this is the line procedure listing:

3450DEF PROC] ine

3460SOUNDO ,-8,4,5

3470x=xstartiy=ystart

3480MOVE x,y
34S0REPEAT

3SS00DRAW x.y

3510x=xt+dx :y=yt+dy

3520UNTIL x>xfinish OR POINT(x,y»)=1

3S5S30ENDPROC

THREE ADDITIONAL FEATURES
As we saw in the last instalment, quite complicated
sounds can be generated by the BBC Micro. For
those of you with a musical bent, we shall now add
a short tune to the program. To make things as
simple as possible we shall only use one channel.
The tune can be played by simply specifying the
frequency and duration of each note in the tune.

4070DEF PROCmusic
4100REM ** 1ST BAR **
4110SQUNB1 ,-3,213,9
41 20SOUND1 ,-8,209,5
4130SOUND1,-8,213,5
4140SQUND1 ,-8,207,5
4150S0UND1 ,-8,213,5

41 s6050UND1,-S,173,
41 7°0S0UNO01,-8,205,
41S050UND1,-8,177,
41°0REM ** 2NO BAR #*
4200 SOUNG1 ,-8,185, 20

oon on

4210S0UND1,-8,1465,5
4220S0UND1 ,-8,185, 5
4230SOUNDi ,-2,173, 20

4240 REM ## RD BAR ££

4250S0UND1 ,-8,165,5
S2S50S0UN01 ,-S,175,5
4270 30UNO01 ,-&,1977,20
4230 EMDPROC

Title Page: We can use the ideas of Exclusive OR
plotting and relative point plotting to produce an
interesting title sequence. This procedure draws
the word MINES using high resolution graphics.
Every new line drawn in the word. is plotted
relative to the last, so we can position the entire
word anywhere on the screen simply by specifying
the start point. If we plot the word and then replot
in Exclusive OR before moving up and repeating
the action, we can make the word appear to float
up the screen. GCOL0129 sets the background
colour to red. Performing a subsequent CLG
colours the whole screen red. At the same time, we
can also play the tune defined above by calling
PROCmusic. The information held in PROCmusic 1s
processed rather more quickly than it is played, so
a buffer is used to store SOUND information until it
can be played. This means that the processor is
free to move on to do other things while the tune is
still playing.

Skill Factors: To make the game a little more
challenging, we can employ the idea of skill
factors. After the title has been displayed we shall
ask for a number between 0 and 9, which will be
stored in the variable skill. This can then be used to
increase the number of mines on the minefield and
the rate of sniping across the area. The first of these
can be done by making a small alteration to the

setup procedure given previously (see page 405).
Change lines 1930 and 1940 to:
1730factor=ski11%*3+30
1740PROClay_mines<factor)

In addition, when we relay the mines during the
reset procedure, we must calculate the number of
mines remaining by changing line 3950 to:
‘3950mines_left=factor-score/150

The full listing for the title page procedure is:
1300DEF PROCti tle page
1310GC0L.-0, 129

1320CLG
1330GCOL 3,3

1340PROCmusic

1350Y=100:xX=0

1346QREPEAT

137°0X=X+20:Y=¥+50

1380FOR I=1 TO 2

139°0PROCmines

1400NEXT I

1410UNTIL Y>700
1420:

14S30PRUCmines

1440PRINTTABCO,202"Skill factor (0-9)7"

1450PROCmusic
1460REPEAT

1470ski11=GET-48

1480UNTIL skill>-i AND skill<ia

142°0ENDPROC
1500:

{S1O0DEF PROCmines

1520PLOT4,x,Y
{SSOCREM *#* LETTER M #*

1540PLOT1,0,200

{SSOPLOT1,80,-100

iS6QPLOT1 ,80,100

1570PLOTIi ,O,-200
1S80REM ** LETTER I **

iS7VOPLOTG ,40,0

1600PLOT1 ,80,0

1610PLOT0,-40,0 ©
1620PLOT1,0,200

1630PLOTO ,-40,0

1640PLOT1,80,0

1650REM ** LETTER N *%

1660PLOTO ,40,-200

“1670PLOT1,0,200
1680PLOT1 ,120,-200
1670PLOT1 ,0,200
1700REM ** LETTER E **
1710PLOTO,1460,0
1720PLOT1 ,-120,0
1730PLOT1 ,O,-200
1740PLOT1,120,0
1750FLOTO,-40,100
1740PLOT1 ,-80,0
1770REM ** LETTER S ¥*
1780PLOTO, 280,60
1770PLOT1 ,0,40
1800PLOT1,-120,0
1810PLOT1 ,0,-180
i820PLOT1,120,0
1830PLOT1 ,9,-100
1840PLOT1,-120,0
1850PLOT1 ,0,40
1860ENDPROC

Up to this point we have been using a temporary
calling program (given on page 394) to knit our
procedures together, but now we have assembled
all the procedures that are required for the main
program loop of the game. Erase the temporary
calling program (lines 10 to 70) and enter the
following listing:
Z2020DEF PROCIoop

20 30REPEAT

2040PROCupdate_time
20 50PROCtest_keyboard
20460rand=RND¢S50-ski112
207GI1IF rand=1 THEN PROCsnipe
2080 UNTIL TIME>12099 OR end_flag=1

2090ENDPROC

Our calling program can now be written. Enter
these lines:
{040hi scoregt="00000"

Li1LoOMobES
1120REM ** TURM OFF CURSOR **
Li S0VPUSS;s8202 303030;
Li4d0PROCti tle page

1150CLSs

1i40FROCsetup

eeu

11iS0FROC] oop

In the next and final instalment of the course, we
shall look at producing the end-of-game scenario
and present a complete listing of our program.

THE HOME COMPUTER ADVANCED COURSE 467

Information Transfer

Double density refers to a
method of transferring
information onto the surface of

disks, and is the same principle ~
for all sizes of disk. We show
double density disks in the |
following sizes: 1) 5zin mini-
floppy, 2) 3in microfloppy; 3)
3,in microfloppy

DISASSEMBLER
A. disassembler is a software program for
converting machine code back into Assembly
language. It will change a byte value into the three-
letter mnemonic for the particular op-code that it
represents (LDA, JMP, etc.), and, from the
addressing mode specified by that particular byte,
it will decide what operand is represented by the
next one or two bytes, and print it in suitable form
alongside the op-code.

Disassemblers are very useful when examining
or modifying machine code written by other
people. However, it is very important to realise
that a disassembler cannot turn a piece of object
code back into its original source code — i.e. with
all the labels and symbols — because no record of
these exists in the object code.

DMA
Direct memory accessis a hardware technique that
allows more than one device to share a common
area of memory. Specifically, it allows a
microprocessor to allocate an area of memory for
this purpose so that another device can read the
contents of that area without interrupting the
operation of the micro. One application for this in
microcomputing is graphics programming. If the
video controller chip can read the contents of the
screen RAM directly, instead of requiring each
byte to be fed to it from the CPU, operation will be
much more efficient.
DMA works because the external device reads

the memory in a different phase of the clock cycle
from the CPU. The processor is thus completely
‘unaware’ that any other device is linked to the
same area of RAM.

DOUBLE DENSITY |
The capacity of a disk unit is determined by its
recording density — that is to say, whether it
records on one side of the disk or both. In the early
days of microcomputing, there were two standard
disk capacities: single density and double density
— the latter featuring twice as many tracks on the
same size disks. Double density disks required far
more accurate control of the disk drive’s read/
write head, and initially were more expensive and
less reliable.

However, disk technology has advanced a feat
deal in the last few years, and these original

468 THE HOME COMPUTER ADVANCED COURSE

standards have less and less significance. A 5in
disk can now store anything from 90 Kbytes to one
Megabyte, and the new 3sin drives, which can hold
anything up to 700 Kbytes, are rapidly ee over
the market.

DOUBLE PRECISION
Real numeric variables, the ones most commonly
used in BAsiIc, generally store the equivalent of
eight or nine decimal places (“equivalent’ because
the values are stored internally as binary, not
decimal, numbers). These are called ‘single
precision variables. Double precision variables
store twice as many digits, and therefore are far
more accurate. |

Most programming languages for mainframe
computers (particularly FORTRAN and ALGOL) give
the pro grammer the option of using either single or
double precision on each variable. Some BAsIcs
now have this facility; using a symbol like # or !
after the variable name indicates double precision
values, just as $ distinguishes string variables from -
numeric ones. |

There are very few applications that require
answers to be given to eight decimal places (the
exceptions are fields like astronomy and
_codebreaking), so why the need for 16? The reason
is that for every arithmetic function performed
(addition, subtraction, etc.), there will be some loss
of precision, because the least significant digit will
be rounded up or down from the true result. In
‘number crunching’ applications, like engineering,
statistics and weather forecasting, programmers
must use considerable skill to prevent these errors
from accumulating (thereby producing answers
with little reliability). Double precision doesn’t
eliminate the problem, but it does help.

DOWNLOAD
Telesoftware is the name given to programs that
can be transmitted from a central source to
individual users. Downloading refers to the
process of receiving the transmission and storing it
in RAM or on disk. Originally, downloading was
used to mean transferring a file from a central

_ mainframe computer to a local intelligent terminal
or minicomputer. Nowadays, you can download —
to a home computer over the telephone (the
Prestel directory contains a large number of
programs that can be purchased in this manner) or
even over the airwaves — both television and radio
networks have successfully transmitted programs
on standard audio channels.

Downloading may radically alter the way that
software is purchased in the future. Now that
games programs rise and fall in popularity in weeks.
rather than months, holding large and expensive
stocks is becoming a real problem for retailers. One
idea under trial is the re-programmable cartridge,
which the user can take back to the shop, where
the program will be changed for a small fee. A
special terminal downloads the program from a
central source onto the cartridge, and then adds
one to the ‘popularity score’ of that program. LIZ DIXON

‘
i

cS)

<>

APPLE MACINTOSH HARDWARE

APPLE BITES BACK

Apple’s Macintosh microcomputer is
designed to make life easy for the novice
computer user. Based on the technology
developed for the more expensive Apple
Lisa, the Macintosh, with its built-in disk
drive, integral monitor, mouse and easy-to-
use Operating system, represents a major
step forward in computer design. ;

The Macintosh is unlike any of the computers we
have discussed so far in the course. In fact, it is
unlike any other machine on the market.
Although the Macintosh is primarily a business
machine, Apple has chosen to create its own niche
rather than follow the path taken by most other
manufacturers who have adopted IBM standards
in their machine designs. By taking this risky
course, Apple has maintained its reputation as an
innovator in an industry filled with ‘lookalikes’.

The Macintosh comes in an unusual package.
The sleek and slender system unit is small for a
machine of its processing power. The display is a
high resolution nine-inch screen, and the drive
uses Sony 32in disks. There is amoulded handle on
the cabinet casing, so the Macintosh can be classed
as a truly portable machine. Together with the
keyboard, mouse and an optional carrying case,
the system weighs a total 11.6kg (25.6lb). The
carrying case has compartments for all of the
Macintosh’s components, in the fashion of a picnic
basket. 3

The Macintosh has a typewriter-style keyboard,
which has an excellent ‘feel’ and is suitable for
touch-typing. The keyboard has its own processor
to handle special functions and international
character sets. The other component of the ‘Mac’,
as it is familiarly known, is the mouse. Named
partly because of the ‘tail’ that connects it with the
system unit, this hand-held device, the size of a
cigarette packet, is moved around a flat level
surface. A cursor makes _ corresponding
movements on the screen, and can be used to
select the activities the user wants the machine to
perform. This is regarded as a much more ‘user-
friendly’ approach to computer design than that
employed by the majority of machines, which
require a knowledge of specific operation
commands. For example, if you wished to open a
document file, you would manipulate the mouse
so that the cursor fell on the small picture symbol
(icon) representing a sheet of paper. A press of the
button on the mouse would then open the screen
for that activity. Having entered your file from the
keyboard, the mouse would be used to return you
to the main menu of icon commands, and the file

could be saved to disk by placing the cursor over
the symbol showing a disk.

The Macintosh comes with 128 Kbytes of user
memory, which can be increased to 512 Kbytes by
replacing the existing RAM with 256 Kbyte chips.
The Mac also has 64 Kbytes of ROM tightly
packed with operating software, which handles
virtually all of the system operations, as well as
some special features. The Sony disk drive uses
34in disks, which store up to 400 Kbytes on one
side and are more reliable than the 5zin disks.

The Macintosh screen is 512 by 342 pixels, and
is ‘bit-mapped’ so that each of its more than
175,000 points can be addressed individually. This

Macintosh System
The Macintosh is designed to
occupy as little space as
possible on a desk-top. The
extremely high resolution of the
screen makes it possible to do
graphics tricks usually seen
only on machines costing 10
times the price

IAN McKINNELL

THE HOME COMPUTER ADVANCED COURSE 469

_ : :

=
makes possible some truly stunning graphics
applications. Besides being great fun, the graphics
tricks of the Macintosh are very valuable to
designers, architects, advisers, public relations
people, photographers, and many others. As the
Mac is designed to work specifically with Apple's
high-speed ImageWriter printer, all of its
impressive graphics will print out exactly as they
appear on the screen.

Despite the high quality and reliability of the
Macintosh hardware, it is the added strength of its
software that makes the machine so exceptional.
With the integration of hardware and software,
and the extensive ROM-based operating
commands, it is fairly easy for developers to
transfer programs written for other computers to
the Macintosh. The computer is so ‘user-friendly’
that it can literally be plugged in and put to work
immediately without prior knowledge of
computer operation.

ee

470 THE HOME COMPUTER ADVANCED COURSE

The Macintosh’s

Analogue Board
This board controls the video

monitor and the power supply.
There is no need for a fan on the
Macintosh. Excess heat is
channelled through metal plates
to the vent slots in the cabinet

Built-in Speaker

Disk Drive Head

Screen Contrast Control

Sony 3: in Disk Drive
Specially-built for Apple, this
drive holds 400K ona side.
Double-sided disks, when
available, will hold 800K each

Video RAM
Some of the 22K required by the
video display is drawn from
these DMA (direct memor,
access) Circuits

Keyboard

detachable keyboard has its
own processor to handle
international character sets and
special functions. No cursor
keys are needed because of the
mouse

Keyboard Connector

Mouse

The mouse controls movement

of the cursor and is used to

‘select’ objects on the screen,
then act on them according to
instructions chosen from pull-
down menus

Analogue To Digital Connection
A ribbon cable connects the
analogue and digital boards

Serial Bus
: ‘ Also referred to as ‘virtual slots’,

Audio Output the serial bus allows you to add
a variety of peripheral devices

cD

Printer Output

External Disk Connector

Mouse Connector

6522 1/0 Adaptor
The 6522, also used for I/O
control in the Apple lle, handles
the keyboard, mouse and ‘real-
time’ clock circuits

Serial Communications
Controller |

Disk Controller
This chip controls the built-in
Sony drive as well as the
external drive, when added

CPU
The Motorola 68000. This chip
performs internal operations 32
bits at a time, but sends and
receives data at 16 bits

128K User RAM
These 16 chips can be replaced
with 256K RAM chips, which
would give the Macintosh a total
of 512K of user memory. 128K is
sufficient for existing
applications, though

THE HOME COMPUTER ADVANCED COURSE 471

JAN McKINNELL

¢
<
Ps !

ww

v

TROUBLED WATERS

Alligators, anacondas and mine-laying
helicopters are just some of the hazards that
must be negotiated as you take a trip up the
river to rescue a group of stranded scientists
in River Rescue. Originally developed for
the Atari VCS video game console, River
Rescue is now available on a range of
popular home computers. —

River Rescuei is apure shoot- em- -up parades oan,
with no pretensions towards being anything more.

It is produced by Creative Sparks, Thorn EMI’s
software division, and the backing of such a large
company is quite evident. It is available in versions
for four home computers: the 48K Spectrum,
Commodore 64, the Atari machines and the
unexpanded Vic-20, and is supplied in a specially
designed bubble pack instead of the usual music-
cassette case. .

Included with each version is a small instruction
leaflet, which is extremely readable and helpful.
This contains an invitation to join the Creative
Sparks Software Club — membership is free, and
benefits include introductory DS news and
competitions.

The game itself is basically very simple, but
features enough action to satisfy any arcade
addict. You control the river rescue power boat,
and it is your job to rescue a group of scientists who
are stuck in the upper reaches of the river. Why the
scientists need rescuing in the first place is not
explained, but the instructions tell you that you
must take them to hospital, so presumably an
accident of some type has occurred.

While attempting to pick up the injured
scientists, you must steer your craft, which travels
at considerable speed, around islands and logs, all
the while blasting away at every alligator in sight.
The Vic-20 version is a little different, with added
hazards in the shape of anacondas and dug-out
canoes. At intervals along the river bank you will
see various jetties; it is from these that you must
rescue the boffins. The successful transfer of a
scientist to the other side of the river increases your
score considerably, but you also score points by
killing the alligators that infest the river.

Extra points are to be gained by transferring the
scientists in groups, although your boat has a
maximum capacity of nine scientists. This makes
matters a bit more tricky, because all hands will be
lost if your boat hits an obstacle. Therefore, you
must choose whether to go for a high score and risk
losing everything or play safe by transferring your
passengers one at a time. To make matters worse, a
helicopter — an aircraft in the Spectrum version —

is likely to appear at any time and drop mines in
the water, which must be blown up before you can
proceed any further.

The Vic-20 version is conveniently supplied in
cartridge format to avoid the tedium of cassette
loading. Here, there is an option of either three or
six stranded scientists and you have six lives per
game. Furthermore, the points scored in each ‘life’
are carried over into subsequent incarnations,
which makes things considerably easier. In this
version, though, you have an extra three rivers to
navigate. |

River Rescue is an all-action, shoot-anything-
that-moves type of game that has been carefully
designed to make the play difficult enough to keep
you occupied for some time, although it could be
argued that it lacks the imagination necessary to
make it really special.

THE HOME COMPUTER ADVANCED COURSE 473

To The Rescue
River Rescue is seen here
running on a Spectrum. The
first photograph shows the
title page, which gives a good
indication of the graphics to
come. The second photograph
shows the game in progress.
The boat is carrying one
scientist to safety where he
can join the others who have

been rescued

LIZ HEANEY

CIRCULAR MEASURE

We look at ‘ recursion’, a technique used in
advanced programming such as artificial
intelligence and the writing of compilers
and assemblers. A functional knowledge of
recursion can enhance a programmer’s skills
and add new dimensions to your BASIC
programs. Our simple example, a Towers of
Hanoi game, shows how easily the
technique can be used.

The subject of this investigation is best summed up
by a common joke definition:

Recursion: see Recursion

This circular definition demonstrates one essential

feature of recursion — namely, something being

474 THE HOME COMPUTER ADVANCED COURSE

defined in terms of itself. But it ignores another
important feature: for recursion to be workable,
there must be a way out of the circularity.

The puzzle we have used to illustrate recursion
is The Towers of Hanoi. The puzzle begins with a
pile of discs arrarged in order of size, with the
largest disc on the bottom of the pile and the
smallest disc on top. To solve the puzzle, you must
move all of the discs from the first pile to a second
pile according to the following rules:

1) Only one disc may be moved at a time;
2) A disc may not be placed on a smaller disc;
3) There may never be more than three piles of
discs.

The diagram illustrates how we utilise the concept
of recursion to make the problem manageable. We
begin with a pile of four discs. By assigning a
variable N with the value of four, we indicate the

- total number of discs that must be moved. Since

the rules do not allow the movement of more than
one disc, we use a recursive formula to reduce the
value of N by 1, then continue the calculation until
N equals one. When N = 1, the program stops
calculating and moves the appropriate disc.

If we are working with a version of BAsic that
allows recursion, it is easy to write a program that
follows the above process exactly. In the BBC
BASIC program, all the work of calculating the
moves is done in lines 1000 to 1050. The rest of the
program is required to produce the moving
pictorial display!

THE SPECTRUM VERSION
To convert the Towers of Hanoi program to
Spectrum BAsic we have to replace a recursive
procedure with a recursive subroutine, which
begins at line 1000 of our listing. Each time the
subroutine has to make a recursive call to arrays M,
A, B, or C, it increments the pointer variable J and
puts the new variable values into M(J), A(J), B(J),
and C(J). Subsequently, these new values can be
used in the next call to the subroutine without
disturbing the old values. At the end of the
subroutine, the value of J is decremented, thus
restoring the old values. This method can always
be used for writing recursive subroutines in BASIC,
no matter how complicated the recursion.

The display section of the program is
straightforward, printing an object in a new
position and erasing it by printing blank characters
in the old position. The programs show the side
view of a pile of discs. To make the piles look
symmetrical, we have ended each odd-sized bar
with graphics characters half made up of a space
and half solid colour.

BBC Micro
DIM Btio): BIM cCrig:

DIM PeS,10)
10 DIM Milga:;
20 Dim 0.10.10): Dif His:
S0 GO =U Souu

#0 DIM Mcl0G>:

Die Ceiuus

{00 INPUT "Holl MANY DISCS?

110 IF Hcl GR NO1G THEN GU

DIM acide:

GOIM Acido): CIM BriUuuD:

i iM

TO 100

i2U GU SUB 3100
130 LET J=i: LE) Mid sen: (El at ls=i: (El Gi

=e: _Fi Coles

140 GU SUB LUbD

S00 STOP

1000 RET URI

ibi0

L020

1030

1040p

1080

10d4U

i100

lil

iile2o

1120

1140

1200

leit

lect

Lesu

Le4du
1 S00

Tait

1Su0

iSi0

iSeu
ieau

Tad

[FF MoJjs=] (HEN GD

LET J=J+l
LE Molise J-1:
LET At Jseatct-1e

LEl Be doelc

LET Ut Ja =ee
GO SUB Luau

LET fc Jia=1]
LET At dseatd-1:

LE! Bi JiseiJ-1:
LET Ci Jett U-ie
Incl SUB 1uuG

LET Modes u-i

Le a 1

LET Bt Jisbe
LeEl — 1)

Ist} SLB Ludo

Let g=J-1
RETURN
LE’ Feseat ds: Lel Fe=b' 2

LET Mé=Db$ (Pi PA Mtl -H!t PAD

FOR [=22-HiFPaA> (0 - SIEP -i
PRINT ml I-11 lus Pa-i) sme;

FRITWT Al I, i0¢PA- Liike;

1350 Fext |
iféQ FUR I=l1Ue¢FA-1?
1570 PRINT Al 4.i 3s:

PRINT Al 6,1;6%;

NExt |.
PUR [=5 [U0 eU-Fi Pe:

1600 PRINT 6! |. UetrPe-is:
PRIMT al i+i, [0s (FE-1):

1620 NEx| |

1640 LE! HOPE ISH OPE UTI:

CPA NtL-HOC RA:
SO LET PoPA,N+1—-Hi PA >=0: LET Ht Peas =Hi PAs -i

RET UR
HO0 LET B® t

14S+CHRS L4sSt+CHRe 14a

S010 LE] C$="":; FOR [=i [0G

145: NEx? 1 ~~
Soe20 FUR [=1 [0 * SIEF 2

S030 LET D&¢1)=BS« TO 4-INT (les) s+CHR$ las+Ce

€ TO SINT (lee itl HRS [sere 60 Gin

endo LET OF (ltl =64¢ 710 4-INI (l-2 074+ et

l+i:+6$° TO 4-INT (lesa:

Meet |
RETURN
INE 3S: FAFER 6:

FUR [=i [0 WN
PRINT @l el-Nt!l G:beclo:

LET Pili ,ls=l: Lel Pie, 1 =U:

NEXT |

LET Ht ljsN:

RETURN

BUE 1Suu;

70 {Ue FPe-i> Sie Soh

BS;

LE] PLPE ti Hoe oer

LET C#=CHRS 143+CHRS

iQ: LET CS=CB+CHRse

ae Lf con

th £ WU) Gi fo © oo.

BURDER 6: LLS
ty i
oom, a:

Lel -(a,!-

i a Ly] Cs LET H¢2)=0: LET H¢Si3=0
fo G1 fo to Ga GO bo to to ee pe tO i}. ee,

(PE-PA)

(i -2)0

TOWERS OF HANOI/PROGRAMMING PROJECTS <:

spectrum
[UDIM OFl le:

2ZUPROCIAIT
TOUINRPUT SHOW MANY

T1ulF Nel OR Weie

1 SUPRUCD] SPLAY CN:

1 SUPRUCHSNU] (HI 2. 3S?
SUDERD
1UDUDEFRPROCHANOL(M,FPA.PE.PL?

1U1GIP Pel [HEN PROLMOVECRA.FED:

ENMUPRUOL
LU SU0RPROCHSHO] (M-1 ,PaA,PC,FED

LOSU0RFROCHANOL©1 .PA.PB.FLO

LUS0RROCHSMUL(M-1,PC,FE,FA:
TURD ENDRPROL

LIOODDEFPRPRULMOVE* PA,FE:
111 0DS=Dec PCPA .Nt+l-Hi FRA?)
11 S0FORIl=24-HiFA) TO 10 STEP -1

LL S0RPRINT TeabCi se: FA-12 1) :be:;
1L14URRINT (Rael eet ra 15 ,1-15;0¢:;

LL S0NEST I

Lié0UPUR[=ilsecrAa-1:

LPe- i
lifURPRITT [abil,

Lieune. |] |

LiPurPoR => (0 22H Pe
T2UUPRINI [ee lee rPe- ,
TeliUPRitlT [eb lace Fe-i.,
Lecutles |) |

| P40HC PER) SH(PE) +1 1PC PB N+1-H(PED ?
=FiPa,N+1—-Hi Fe:

1250F (PA .M+1-Ho FA) =

1 SSUENMDPRUL
SUUUGERPROLINI [
SUSUPOR i-=) [0 11 SieF 2

SOU S0DE) | AjS=LCHRE1 SUtSTRINGE¢ S—

[ebive ° §“ +lHREesdts] Rls ce
(14D Je) UCHRE 255) +l RE$SSt+ So] RINGS

(S-i-blVve. 3?
SO4008¢C14+13=CHEE1 SO+STRING?< 5

I“sbliVe, “tS RF IHGt [271 .CHRS

Soa ts STRINGS ¢S-1y Ole. wy

SUSUREST Le
(USUBE=CHRELSO+STRINGE le," 7&3
SO700U 22,1 ,U:0:0:c;

SUSOCENDRPROL
21 OODEFPROCDISPLAY(N)

SLlULLS
SI2ZOFURI=1 [0 WN
SI SUPRIN] Jee iuU,ecs itis;

51 25RP(1,l =l:P le, 1 =u:

41 40NEXT i

St S50Ht1LISEN:Hi eoSO:

21 60ENDPRUL

HS) Pts. i2d

DiSsls

THEN

(1-12)"qN
Tug

Til 1 Se Pei

1 3D3 ;

, ie ibe

,i tis ive;

:H¢PAI=HC PAD -1

DS ls;

pos. lo=u

Ht S2=0

Recurring Problems
This is a photograph of the
Towers of Hanoi program
running on a Spectrum. [he
colour of the blocks can be
changed very easily. If you
try to follow as the computer
solves the problem, watch —

carefully - the action moves
rather quickly!

THE HOME COMPUTER ADVANCED COURSE 475

° °
io °

[ee Se a)

IAN McKINNELL

TOP SECRET

Our course on 2 program design ae SO > far
shown how programs may be constructed
from small, largely independent units called
modules. We have looked in detail at how
such building blocks are designed, and here
we show you how to use them in the
development of a complete program. _

When building a program, it is a good eat to
develop an overall structure, consisting of a base
level of general-purpose routines that are used by
other routines of increasing specialisation on
higher levels, all under the direction of a single
control module at the top. This ‘pyramid’ structure
will allow us to use a design method called
‘program refinement’ or ‘top-down design’.
Top-down design, as its name suggests, entails

designing the topmost control program first. We
describe its functions in terms of calls to ‘lower’
level routines and, for the time being, we need not
worry too much about how these lower-level
-modules will work. Once this is done, we move
down a level and describe the workings of each

- routine called by the top-level module. Each
routine is described in terms of the routines it must
call, and this process is repeated level by level until

we reach the lowest level. At that stage, the
- functions performed by the routine we are

describing are so simple that they may be defined
by using the programming language itself.

_ As an example, let us look at the design of a
‘Hangman’ game. Instead of the player trying to
guess a word selected by the program, as is the case
with most computer versions of the game, we want
the program to guess a word that we have chosen.
One way of achieving this, without giving the
program a long list of English words, is to enter
data on the likelihood of particular letter
sequences occurring.
100 REM Initialise variables and arrars

Soo REM ##*84Control Routine seeeeeeeeee

aol Rel

S20 SUSIE LUI REPT ike & Help screens

Sao GOSUEB 2O00:REM Set up Goard

Sat, GUSHE 4000s REM Find word. length
from player |
S50 GOSUE S000:REM Select data set and

roam it
S40 GOSUEB S000 :REM Guess = letter

S70 GOSUB 4500:FREM Check guess with

placer
Seo GOSUB SO00:REM Update the board

S?0 IF GAME MOT_OVER THEM 360: REM

Guess again until game lS over
400 IF LIN THEM GOSUB 10000 ELSE

GBOSUEB L1igogo0:REM safe appropriate

_ 476 THE HOME COMPUTER ADVANCED COURSE

enging ror. wih or. lose
410 GOSUB 4000:REM ask the plarer for

another game
S20 Leo RnOHEr ICHEM Seu REM dit

another then start again
430 GOSUE FOOO0:FEM say goodbye and stop

640 EMD |

We know before we star‘ that certain things:
must be done: variables need to be initialised,
arrays must be dimensioned, the ‘board’ display
has to be set up and updated as necessary, and
routines must be written that keep the score, that
make guesses, and that end the game.

Our first attempt at designing the control
routine has a simple REM statement to indicate that
variables and arrays must be initialised — we can
fill in all the necessary details at a later stage. The
control routine itself is simply a pair of loops. The
outer loop (line 620) tests to see whether the user
is signalling the end of a session, while the inner
loop (line 590) tests to see if the game has ended.

Should we need to test the control routine, we
must set up dummy subroutines to match the
GOSUBs. Each GOSUB in the control routine should:
have a REM statement to explain its function and
should start at a convenient line number —
preferably one that is a round figure, such as 1000
or 5000. It is a good idea to ensure that routines
with similar functions are given standardised line
numbers; this will make life easier when routines
are moved from one program to another. For
example, game instructions might be contained in
a subroutine that begins at line 1000, while a
GOSUB 7000 program line will always end a game
by calling a standard routine.

Our initial control routine is kept short and
simple. It will fit onto the screen and therefore is
easier to understand and debug than a program
that extends over several screens. The three
variables, GAME NOT OVER, WIN and ANOTHER, are
all flags that are set in the various subroutines
called by the control routine and are used here to
determine whether the control program works in
the way we intend. It should be quite easy to spot
any errors in logic in this simple control routine.

At this stage it is necessary to look at the
program’s structure with a critical eye — we need to
ensure that the program behaves as it should in all
circumstances. We can also start to make
improvements in the program design; for
example, we might like to make the instructions
available at any stage of the game and it might also
be a good idea to keep a record of how many
games the computer or player has won and a list of
words that beat the program. Any or all of these
changes can be made at this stage.

The next step is to specify each of. the

y '

subroutines called by the control program. Our
listings show how two of these routines might look.
The first (beginning at line 4000) simply prompts
the user for a number between 1 and 20 (the word
length). It uses a general-purpose subroutine that
is assumed to exist at line 51000, which will take a
string specified in PROMPTS, print it and then
accept a number input by the user. If this number
is not an integer that falls between the limits set by
MIN% and MAX%, an error message will be given

_and the user will be asked to input a new number.
This subroutine may easily be used in other
programs, and a library of such general-purpose
modules may be built up for use in later projects.

4000 REM Giecover word length from
player

40i0 FEM ,

4020 PROMPTE="How many letters are

Chere . 1 oie eee

4030 Mihix=1

4040 MAxX-M=20

4750 GOSUB Satu Rehan niput ar integer

between MINK & MAM

4040 WORDLEMM=RESPM:REM FESPA is used 6b

the subroutine at SIG00 to pass back

the response

4070 RETURM

SOO REM select data set and load it
BO1l0. REM '

so20. IF WORGLEME? ? THEM FILE Lasse

ELSE, FILE LvA=WORDLEHNM

S030 FILENO LS=STRecFILe two

S040 FILEMAMES="TABLE"+FILEMO L#

BOSO GOSUE FO00:FREM OFEM, READ & CLOSE

the +6) 4th ether 1 Peli hood: data for

the appropriate word length.

so40 RETURM |

The other routine (beginning at line 8000) uses
local variables (FILE L% and FILENO LS). We have
assumed that the data needed to guess a letter is in
eight sets of tables that give the likelihood of
finding any particular letter next to any other. As
we want only one set of data in RAM at any time,
we must build up a string in FILENAMES to hold the

at line 9000 to read the file.
name of the data file, and then call the subroutine

_Inmany cases, we will find that our program will
move directly from one routine to another.
However, we will usually want to create an extra
routine that calls each of the other two in turn. This
may seem like an unnecessary complication, but it
allows us to keep a tight control over the program’s
‘flow’ and it has the added bonus of keeping
program modules separate so that they may be
easily added to other programs. |

This use of subroutines that are transportable
from one program to another does involve extra
work, and care must be taken when designing the
routines so that they are suitable for use in a wide
variety of circumstances. This may often be
achieved simply by replacing constants with
variables. It is important that all subroutines

- should be well documented. The documentation

should specify the exact purposes of the routine,
giving details of the variables used, the values
expected as input and output, and any side-effects
(moving the cursor position, changing the
memory map, closing files, and so on).
A standard layout is also very helpful; you

should make sure that all line numbers have a fixed

interval, the titles and comments are restricted toa
set number of lines at the beginning of the routine,
and that RETURN is always on the last line. Be sure
to note the first and last line number of each
routine. When a library routine is required, make
sure that the program has an appropriate gap in its
line numbers and then MERGE the subroutine into

the program. If your micro has no MERGE
command, it may be possible to use a text editor to
combine programs that have been SAVEd in ASCII
format rather than the usual ‘tokenised’ form. If
this is not possible, your library subroutines will
need to be typed in each time they are used.

- However, the fact that they will not need to be
redesigned should make the extra work
worthwhile. :

Top-down Programming
This diagram illustrates the
principle of top-down
programming. We have used the
Towers of Hanoi program that
appears on page 475. The line
numbers in the diagram refer to ©
the BBC listing. .

The first layer of the structure
represents the initialisation
program, which must be
completed before the rest of the
program can be executed. The
CONTROL PROGRAM in our
diagram represents the recursive
algorithm, which performs the
calculations and calls the other
subroutines as necessary. The
SPECIFIC APPLICATIONS
SUBROUTINES (lines 1120 to
1220), are used to move the
block shapes from pile to pile in
the display. The final two

~ sections of the diagram,

LIZ DIXON

GENERAL SUBROUTINES,
represent the last two sections of
the program that are used to
format the initial display and
create the design for the blocks. .
Compare this structure with the
listing, and you will see that the
program is constructed in
exactly this sequence

THE HOME COMPUTER ADVANCED COURSE 477 |

NOT SO FAST
Stated that the We have often

advantage of machine code is the speed with
which programs are executed. However,
Assembly language programmers often find
that their programs run too fast, and they
need to insert time delays to slow them
down. We look at the most popular methods

for creating 6502 and Z80 software delays.
Delay loops i be implemented ii 6502
Assembly language in several ways. The most
obvious and simple method is to load one of the
index registers with a value and decrement it
within a loop until it reaches zero:

Each machine code instruction takes a particular
number of clock cycles to execute. Information |
about these can usually be found with the
descriptions of how the instructions operate. For
example, the DEY instruction takes two cycles and
LDY in immediate addressing mode also takes two
cycles. As each cycle takes one microsecond (a
millionth of a second), we can calculate the ‘real
time’ taken to execute the delay loop. The total
number of cycles can be calculated as follows:
1) The LDY #807 instruction takes two cycles.
2) The program branches back seven times. Each
time there is a branch back then the BNE operation
takes three cycles: hence the DEY and BNE
instructions take (2+3)X7 = 35 cycles.
3) But the last BNE does not branch back and,
therefore, takes only two cycles.
The total number of cycles is, therefore, 2+ 35 —1
= 36. The time taken to execute the delay is thus
36 microseconds. :

There are several problems associated with
using machine code delay loops to cause ‘real time’
delays (that is, delays that can be measured
accurately in seconds or microseconds). The first,
and most important, is that while a processor is
executing a machine code program it regularly
suspends this activity to service other parts of the
system, such as scanning the keyboard, updating
the internal clock, and so on. These breaks in
program execution are known as ‘interrupts’, and
two types of interrupt occur on the 6502 chip: NMI
(non-maskable interrupt) and IRQ (interrupt

478 THE HOME COMPUTER ADVANCED COURSE

request). The name given to the first type of
interrupt implies that there is nothing that can be
done to stop these interrupts occurring, but it is
possible to stop IRQ interrupts that are not vital to
the functioning of the processor. |

IRQ interrupts can be masked by setting a
particular bit in the processor status register to

one. This is done by the instruction SEI. IRQ
interrupts can be re-enabled by resetting the same
bit using CLI. If we mask the IRQ interrupts before
entering the delay loop, we can improve its
accuracy. If a non-maskable interrupt occurs
during execution then this will cause errors in the
timing. Our original delay loop listing should be
altered as follows to mask interrupts:

-

Masking the IRQs in this way adds another four
cycles to the routine, which will now cause a total
delay of 40 microseconds, assuming that no NMIs
occur. , 3
Another aspect of delay loops is that of

‘resolution’ — that is, how the time taken to
execute a delay loop varies between one counter
value and the next. In our example routine, we
loaded the Y register with a value of seven, but if we
had used a value of six instead, the delay time
would have been 35 microseconds (2 + 2 +
(2+3)x6 — 1+ 2). A value of five in the Y register
would. have taken 30 microseconds and so on
to a minimum resolution of five microseconds.
We can ‘fine-tune’ our program (to give timings

other than multiples of five) by placing NOP
instructions outside the loop. An NOP instruction
means the processor will perform ‘No OPeration’,
and take two cycles to doit. If we wished to create a
delay of 44 microseconds, for example, two NOP
instructions could be added to our program before
(or after) the loop:

This type of delay has an upper time limit
determined by the maximum value of Y that can be
used. As the Y index register is eight bits, this
maximum value is 255. This gives an upper limit of
1,280 microseconds (2 + 2 + (2+3)X255 -1 + 2),
or approximately one thousandth of a second.
This is a long time in microprocessor terms, but
not in human terms. Occasionally, we will require
longer time delays. Slight improvements in the
time length can be made by adding NOP
instructions within the loop. For example, adding
one NOP instruction improves the maximum delay
time to 1,790 microseconds (2 + 2 +
(2+2+3)x255 oo ee”? eae

For substantially longer delays we must devise
another method. The two most common ways of
producing long delays are to use a second loop
nested around the first, or decrement a larger
number, say a 16-bit word made up of two bytes
from memory. For each of these methods you may
wish to calculate the standard of resolution that
can be obtained.

NESTED LOOP COUNTER
TVELAY SET

LOS #44 1

LOOFL LOY #EFF cus
LOOP 2 ey

BHE LOOPS send of inner lor

iS outer

DEY
BHE LOOP 1
IDLY

send of outer Loop

The inner loop of the above program takes 1,276
microseconds (2 + (2+3)X255 —1) to execute.
The outer loop contfols the execution of the inner
loop and performs a DEX and BNE four times. The
total time for this delay can be calculated as:
2.42 Ziad 1 2 = 5,129.
microseconds.

Z80 TIME DELAYS
Each Z80 machine code instruction takes a
different amount of time to execute (measured in
units called “T states’), and the Z80 runs at
different speeds on different machines. To
calculate the real time taken by each instruction,
the number of T states for the instruction is
divided by the clock frequency of the micro. For
example, an instruction that takes four T states to
execute on a processor with a clock frequency of
2MHz is performed in two microseconds.

Rodnay Zak’s Programming the Z80 contains
timings for all the Z80 instructions. These are the
CPU clock speeds for the popular Z80-based
machines: ZX81 (3.25MHz); the Spectrum
(3.5MHz); ‘Tandy TRS80/Video Genie
(1.7MHz); and the Amstrad (4MHz).

To perform a very small time delay, the NOP
instruction can be used. This instruction, on a
2MHz micro, will give a delay of two
microseconds. A number of these can be used in
succession, but longer delays can be achieved by
calling dummy routines; for example, the
following routine will give a delay of 27 T states:

CALL DELAY
RET

loge counter:
Ss inner look counter

In this example, the CALL instruction takes 17 T
states, and the RET instruction takes 10. Thus, with
a processor running at 2MHz, the delay will be’
13.5 microseconds. To extend this delay slightly,
NOP instructions could be included at the
beginning of the routine.

To achieve longer delays, a loop needs to be
used. In the following example, a register is loaded
with a value, which is then decremented within a
loop. The routine gives a delay of 99 T states (or
49.5 microseconds at 2 MHz).

The three instructions beginning with LD B,5 are
the delay loop itself. As in a 6502 machine code
routine, the total time length for this routine is
varied according to the value loaded into the
register. The total number of clock cycles it takes
to perform this code can be expressed as:

C = 24+ (NX16) —5
where N is the value loaded into the B register.

Nested loop counters can also be used. But here
we must take other considerations into account.
Firstly, any registers used during such a routine
must first be ‘pushed’ to preserve their contents. .
Secondly, some machines have hardware
interrupts that will upset the timing. The maskable
interrupts are disabled and reinstated by the Dl and
El instructions. The following routine makes use of

_ nested loop counters:

In this routine, the delay is increased if the value in
the E register is increased. The routine will end
when a decrement is made on the E register and the
result is zero. Note that if the inner loop reaches
zero, and the outer loop still has a value larger than
one in it, the inner loop will be initialised to 255
and the inner loop will count down to zero before
control is returned to the outer loop.

Timed Invasion
Machine code timing delays are
necessary in games programs,
particularly when there is a
moving object on the screen that
the player must interact with. A
classic example of this is the
Space Invaders game. Without
timing delays, the movement of
the invading aliens would be too
fast. Through carefully-
controlled timing delays,
movement can be controlled as
necessary to make the game
play properly

THE HOME COMPUTER ADVANCED COURSE 479

Company Chairman
Richard Heath, the chairman —
who founded Prism as a
subsidiary of ECC publications

480 THE HOME COMPUTER ADVANCED COURSE

OLOURFUL_
~ CONNECTIONS

Prism i is a company that has grown from its
simple beginnings as a distributor of Sinclair
products to become a major marketing
force. Instrumental in the development of
Micronet, the company now markets
Sinclair, Oric and Wren computers and is
currently moving into the fast-developing
home robotics field.

While most companies in the home computer
industry are content to take a short-term view of
the market by fulfilling immediate demand for
hardware or software, Prism is looking to the
future. A major hardware distributor, Prism
played a leading role in the development of
Micronet — the first large-scale database to be
made available to home users — and is now
involved in the distribution of low-cost robots.

The company was set up in 1982 by ECC
Publications to develop Micronet, under the
direction of Richard Heath and Bob Denton.
‘Micronet uses Prestel, the largest public viewdata
system in the country, to enable users of a wide
range of home computers to download software,
access information and exchange ‘electronic mail’
(see page 101). ECC Publications had already
launched Sinclair User magazine, although at this
time Sinclair products were available only by mail
order or through the WH Smith retail chain.
Sinclair User proved hugely successful, despite
initial scepticism on the part of Terry Cartwright,
now Prism’s marketing director. ‘I thought Sinclair
was just a flash in the pan,’ he admits, ‘but we went
to the first ZX Microfair with 8,000 subscription
forms and there were queues of people right
around the block and we handed out all the forms
in just a few hours.’

Sinclair decided to move into the high street
retail market, and Prism duly signed a contract to

distribute the ZX81 and the newly launched

happen with Apple computers, either.’

Spectrum. In fact, the company name was
deliberately chosen to foster an association with
the Spectrum in the public mind — after all, if you
direct a beam of light through a prism you'll end up
with a spectrum of colours! Prism recently claimed
to have sold over 500,000 Sinclair machines — an
estimated 25 per cent of all UK home computer
sales to date.

March 1983 saw the launch of Micronet by
Prism, in partnership with British Telecom and
Telemap. Prism took care of the hardware,
distributing a range of modems (manufactured by
OE Ltd and Thorn EMI) for the more popular
machines. The most recent addition to this range
was a modem for use with the Commodore 64.

Micronet now has around 10,000 subscribers,
but Prism has recently sold its share of the network
and is now concentrating on marketing and
distributing computer hardware. In addition to the
Spectrum, Prism now handles the Oricand Atmos
machines as well as its ‘own-brand’ portable
business machine, the Wren. After production
delays of several months, the Wren, which is
manufactured by Thorn EMI, is now appearing in
the shops at a price of around £1,000.

Prism is also moving into a new area — the
distribution of home robots. Interest in this field is —
growing fast, and Prism now markets “Topo’, a
£1,500 robot imported from the USA, as well as a
number of cheap robot kits selling under the name
‘“Movits’ at prices between £10 and £35.

Terry Cartwright sees robots as an area of great
expansion. “There is a tremendous interest in
robots,’ he says. ‘I don’t know what people will do
with them, but in 1976 nobody knew what would

The
company also hopes to begin distribution in
September this year of the Sinclair QL. Cartwright
expects Prism’s diversification to continue in the
future. ‘Overseas expansion is very much a
priority in the next 12 months, he says.

Early Bird
The Wren, Prism’s portable
Z80-based business machine,
comes fitted with two disk
drives and a built-in modem to !

connect it to Prestel

| Aitline 402

_ THE HOME COMPUTER ADVANCED COURSE
INDEX TO ISSUES 13 TO 24

hoo Electron 449-451
2 graphics 446-447

_ internal timer 405
Plus 1 interface449-451

| ACT Apricot 249-251
| Adam, Coleco 389-391
Advance 86 349-351

_ | Advanced Bridge Challenger 445
Adventure games 336,384-385,

: : 433, 486

_ Algorithms 334, 386-387
Alligata Bridge 445
-Amsoft432 _
Amstrad CPC 464 429-432
Animals game 252-253

| Apocalypse 356
| Apple ImageWriter 470
Apple Macintosh 469-472
Application generators 388

| Apricot XI 250
_ Arithmetic Logic Unit (ALU)

 ~—=—D2-293
Artic Computing 420
Artificial intelligence 412-413

| Ashton-Tate (see dBase II)
|__| AticAtac376 ~~
| Audio game274

| Audiogenic 460

_ Baden, Tony 340
_ Bar charts program 335
BASIC 241-243

| __ documentation 354-355
| BASICODE 241-243 __
BBC Micro 369-371, 449,451

BASIC procedures 392-393
circle drawing game 439
graphics 377-379, 392-394,

404-405, 434-436,
— 438-439, 446-447,
466-467

internal timer 405
Sprites 377-379

_ Sprites program 379
Structure program 392-393
tracer 410
word processing 261

Bi-directional printing 364 _
Breshen’s algorithm 438
Bridge Player445
Bridgemaster series 444-445
Bridge programs 441-445
Brother EP-44 406-407
Buck Rogers 390
Bucy, Fred J 440

_ Buffer 304
Bugaboo 296
Bug-Byte 340

. |

Camputers 260
— Canon PW1080 305
Carrier tone 248
Carry 248
Cartwright, Tony 480
Casio FX700P 443
Cassette file handling 294-295
Cell 248
Centronics 248
Chain 268

| Channel 268
Character generator 268
Charge-coupled devices (CCD)

(248
Charles, Stanley260
Check digit/check bit 268
Chess programs 301-303

| Circle drawing 457-459
Clock 288

speeds 479
CMOS 288 ©
Coaxial cable 288
COBOL 288
Cold start 308
Colossus 2.0 302
Colour Genie 309-311

cassette meter 310
Joysticks 311

Command language 308 ©
Commodore 64
gaps 254-256, 264-265,

284-285, 314-315,
416-419, 457-459

sprites 264-265, 284-285
word processor 263

Comparator 308
Compiler 308

| Complement 328

Composite video 330
Compound decisions 424-425
Computer manufacture 421-423

_ Computer surveillance 461-462
Concatenate 328
Concurrency 328
Constants 328, 354
Contents addressable 328
Control characters 348
Corn Cropper 401-403
Courseware 348
CP/M 348
CPU 266-267, 292- 293, 348
Crash 368
Cross-assembler 368
Current loop 368
Cursor 368
Cyrus IS Chess 302

Daisy-chain 268
Daisy wheel 388

printers 364-365
Dallas 402
Databases 281-283, 388
Data corruption 388
Data processing 408 _
dBase II 388
Debugging 334-335, 408
Decision table 408, 424-425

tree 408
Declaration statement 408 —
Decrement 428
Degaussing unit 428
Delimiters 428
Denton, Bob 480
Desert Trucker game 312
DES chip 371
Diagnostic routine 428
Digigraph tracer 410
Digital plotters 448
Digital signal 428
Digital tracers 409-411
Digitise 448, 468
Dimension 448
Direct access 448, 468
Disassembler 468
Disk drives 369-371
Documentation 335, 354-355
Dot matrix printers 304-305,

324-325, 344-345

Double density disks 468
Double precision 468
Download 468
Dragon Data 320
D-type flip-flops 246-247
Dual In-Line (DIL) sockets 448
a loop 392

E
Econet 322

‘Eight-bit multiplication 299
EPROM 443
Epson FX80 305, 325 —
Explosion -

graphics 446-447
sound effects 447

_ Eyles, Mark 280

Fatal error 368 _
Ferguson TX 330 _
Fidelity CM14 330 ©
Fileplan 326 :
File handling 244-245, 272- 273,

294-295 :
File server 321
Flowcharts 414, 424-425
Follow That program 373

G
Galvin, Robert 360
Global variables 455
Grand Master 64 302
Greenwood, Dick 260

H
Hashing 272-273 _
Hayakawa, Tokuyi 400
Heath, Richard 480
Herrman, Jochem 241
Heuristic programs 252-253 _
Hewlett Packard 41C 443
Hollis, John 280
Hopper, Captain Grace 408

| | Lambert, Nick 280
| Levy, David 301

- _ | Mailmerge 327
| Manic Miner 313

_ Minter, Jel 380

|

2
| Intelligent Software 382

Iteration box 414
TTT RL2 315, 33 1

_Jausons, Davis 260
| JetPac 395°

_| J-K flip-flops 246-247

-Karchner, John 440

| Linesub routine 418-419 |
_ | Llamasoft 380

| Local variables455
| Logic 266-267, 292-293
- Logic seeking 364

| Loops414
| Lunar Lander 352- 353

| Lynx260

| Machine code: 257- 250, 276-279,
297-299, 316-319,
337-339, 357-359,

_ 377-379, 396-398,
416-419, 438-439, |

| 457-459, 478-479
| Magic Squares 286-287
1 program 287
‘Mailing List Manager 327
_ Mailing programs 326- 327

| Marketing 361-363 ©
McDermott, Eugene a40
MCP 369- 371.

/ -Memoplan 326 |
| Mephistolll303

_ Micronet 426- 427, 480.
_ | ‘Milner, Tony 340

_ Minefield game 392-394, 404-405,
434-436, 446-447,
466-467

"| Prestel 426-427

_ Print server 321

Mode 7 450
Modems 426-427
Modular structuring 454-45: 55

| Monitors 329-331 _
interfaces 331

_ signals 330 ©
_| Monopoly 401

Monostable circuits 246- 247

Moore, Brian320 |

Motorola360 —_y
Multi-tasking 328
Muiti- User Se 384-385.

Networking 321-323, 346-347
NMOS 288
Nodes 321

_ Nordmende 1534 330

a

Olivetti 300°
: M10300

- M20300
M24 300

_ Olivetti, Adriano 300 —
Olivetti, Camillo 300
Oric Atmos 269-271 |

disk drive 271\
___ printer/plotter 271

| Paintbox 304 : oe
PASCAL documentation 354-355 a
Peri- TV 330

Plotsub program 416-419 _
Plotter interfaces c chart 291 |

-PMOS 288
Pocket computers 441-443

| Portable computes 341-343,
469-472

Printer buffer 304

Printers 324-325, 364-365
Printer/ plotters 289- 291

Prism 480 ©
vis 5000 426- 427

Program documentation 354-355.
—_ design 374- 375, ie ATT
Psion 382-383 _

Organiser 441-< 443
| ee pees 412- 413

Quicksilva 280
-

| Random access files 244-245, :
_ 2/2-273

RDLabstracer410
Recursion 474
Redundancy 388
Register transfers 277 _
Reverse program 399 —

_| River Rescue 473°
| Robers, Klaas 241

Robot plotter 409- 410
Rotate

| Sabre Wulf 433
Sargon III 302
Screen — 358
Scrolling 397 —
Scuba Dive 275 |

| Sequential files 244- 245
| Serial files 295
Shannon, Claude 301
‘Sharp Corporation 400
Sharp PC 1251443 ©
Shift 297-299

‘Shirrett, John 260
Sight and Sound 465 _

| Simon Says 372-373
| Sinclair Spectrum

graphics pen 366-367

_ keyboard 366-367

tracer4iQ
___windows 396- 398
windows program 398

_ word processing 262-263 ©
_ ZX Net346-347

Single- byte register transfers 277
SmartBASIC390 ~—~C

_ SmartWriter 389
Snooker 415

Software production 381-383
| Sound-game programs 274

_| Spreadsheets 306-307 ©
Sprintyper 465

| Stack 257-259
_ Stack pointer 257
_Starbase 327 |
Stress analyser 462
Subhunter Peet 256, 314-315 |

graphics program367

Sprite routine357-359

: "INDEX To ISSUES 3 TO 24 a

k witactic analysis 413
: _ System analysis 374-375
es 2 445

=
: S eae

z

%] a3

T elevision/n monitor 329-331
_ Testing reflexes program a7
Texas Instruments 440 |

TI-66443 es
Three-dimensional graphics _

— 332-333, 452-453 _
program 433 _

Time Slicing 328 —
_| Timing circuits 246-247

Timing delays 478-479
| Top-down design 476-47 7
| Torch disk pack 369-37 1

ZEP 100369
| Touch-typing 463-465

_ Towers of Hanoi program 474-475
True descenders 305

Turing, Alan 412
| Turner, Richard 420

Twin Kingdom Valley a .
Type Invaders 465 —
Typing Tutors 465

| Valhalla 456
Vax 750 383
Visawrite 327.

/ Wadmon, Richard 1320 —
Warm start 308 _
Word processing 261- 263 : _

| Wordstar 263
vo 327

Zaks, Rodney 479 _.
Z80 oo instruction set _
319 _

6502 microprocessor instruction set
(319

